
Introduction
Visible surface determination

In 3D computer graphics, hidden surface determination (also
known as hidden surface removal (HSR), occlusion
culling (OC) or visible surface determination (VSD)) is the
process used to determine which surfaces and parts of surfaces
are not visible from a certain viewpoint.

Introduction to Hidden Surface
• Given a set of 3D objects and a viewing specification,

we wish to determine which lines or surfaces are
visible, so that we do not unnecessary calculate and
draw surfces, which will not ultimately be seen by the
viewer, or which might confuse the viewer.

• The various algorithms are referred to as visible-surface
detection methods.

• Sometimes these methods are also referred to as hidden-
surface elimination methods, although there can be
differences between identifying visible surfaces and
eliminating hidden surfaces.

• we may not want to actually eliminate the hidden surfaces,
but rather to display them with dashed boundaries to retain
information about their shape.

Simple example…

With all lines drawn,
it is not easy to
determine the front
and back of the box.

Is this the front face of
the cube or the rear?

Approaches

• There are 2 fundamental approaches to
the problem.

– Object space
– Image space

Object space

• An object-space method compare objects and parts of objects
to each other within the scene definition to determine which
surfaces, as a whole, we should label as visible.

Image space
• In an image-space algorithm, visibility is decided

point by point at each pixel position on the projection
plane.

• Pseudo code…
– for each pixel in the frame buffer

• determine which polygon is closest to the
viewer at that pixel location

• colour the pixel with the colour of that
polygon at that location

Algorithms

• Object space
– Back-face culling

• Image space
– z-buffer algorithm
– Scan line algorithm
– Area subdivision algorithm

Z-buffer algorithm

• It is an image-space approach to detecting visible surfaces. it is
also called depth-buffer method.

• It compares surface depths at each pixel position on the
projection plane.

• Each surface of a scene is processed separately, one point at a
time across the surface.

• The method is usually applied to scenes containing only
polygon surfaces, because depth values can be computed very
quickly and the method is easy to implement. But the method
can be applied to nonplanar surfaces also.

Figure shows three surfaces at varying distances along the
orthographic projection line from position (x,y) in a view plane..
Surface s1, is closest at this position, so its surface intensity value
at (x, y) is saved.

Figure : From position (x, y) on a scan line, the next
position across the line has coordinates (X + 1, y), and the
position immediately below on the next line has coordinates
(x,y - 1).

Depth values for a surface position (x, y) are calculated from
the plane equation for each surface:

For any scan line in figure adjacent horizontal positions across
the line differ by 1, and a vertical y value on an adjacent scan line
differs by 1. If the depth of position (x, y) has been determined to
be z, then the depth z' of the next position (x + 1, y) along the
scan line is obtained from as

The ratio -A/C is constant for each surface, so succeeding
depth values across a scan line are obtained from preceding
values with a single addition.

On each scan line, calculate the depth on a left edge of the
polygon that intersects that scan line in Fig. below. Depth
values can be calculated by previous equation.

Y San line

Top San line

Bottom San line

Left edge
intersection

Fig. 13.6

We first determine the y-coordinate extents of each polygon, and
process the surface from the topmost scan line to the bottom scan
line, as shown in Fig. 13-6.

Starting at a top vertex, we can recursively calculate x positions
down a left edge of the polygon as x' = x - l/m, where m is the
slope of the edge (Fig. 13-7).

Y San line
Top San line

Bottom San line

Y-1 San line

X X’

Figure 13-7: Intersection positions on successive scan Lines along a left
polygon edge.

Depth values down the edge are then obtained recursively as

If we are processing down a vertical edge, the slope is infinite
and the recursive calculations reduce to

Application

A hidden surface determination algorithm is a solution to
the visibility problem, which was one of the first major
problems in the field of 3D computer graphics. The
process of hidden surface determination is sometimes
called hiding, and such an algorithm is sometimes called
a hider. The analogue for line rendering is hidden line
removal. Hidden surface determination is necessary to
render an image correctly, so that one cannot look through
walls in virtual reality.

The irregular Z-buffer is an algorithm designed to solve the visibility
problem in real-time 3-d computer graphics. It is related to the
classical Z-buffer in that it maintains a depth value for each image
sample and uses these to determine which geometric elements of a
scene are visible. The key difference, however, between the classical
Z-buffer and the irregular Z-buffer is that the latter allows arbitrary
placement of image samples in the image plane, whereas the former
requires samples to be arranged in a regular grid.

Scope of Research

